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Abstract. Interacting with computers typically relies on traditional 
input devices such as keyboards, mice, and monitors, which can be cum-
bersome for users seeking greater mobility. Virtual keyboards have been 
explored to address these limitations, but they often involve complex 
setups or expensive equipment. This paper proposes a novel virtual key-
board system that leverages only a standard camera and a paper with 
a printed keyboard layout. Unlike previous methods requiring complex 
calibration or special lighting conditions, our approach can work on stan-
dard environment using modern computer vision technologies. Combin-
ing modern segmentation and detection models with traditional image 
processing algorithms, we efficiently identify the keyboard region. Touch 
detection is performed using an algorithm analyzing the color of the 
user’s fingernail. Experiments demonstrated a promising results our pro-
posed solution of keyboard and keystroke detection for practical appli-
cations. Participants attended our user study also found the proposed 
system interesting. 

Keywords: Human-computer interaction · Virtual keyboard · 
Keystroke recognition 

1 Introduction 

Traditionally, interacting with computers has depended on keyboards, mice, and 
monitors, which can be cumbersome and inconvenient for users requiring greater 
mobility. To address this challenge, various innovative methods have been pro-
posed. For instance, virtual keyboards can now be utilized with flat surfaces 
[ 5, 15], or in AR/XR environments [ 8, 17, 22]. The TapType [ 19] system enables 
users to type using two wristbands, eliminating the need for a physical keyboard. 
Yıldıran [ 22] uses virtual hands and a virtual keyboard in an XR environment, 
and allows users to adjust the keyboard’s size. 

There are two primary types of keyboardless input approaches: Dynamic 
Bayesian Networks [ 7, 8, 19] and projected virtual keyboards [ 5, 15, 17, 22]. 
Dynamic Bayesian Networks may struggle with non-standard typing patterns 

Q.-T. Nguyen and G.-P. Song-Dong—Contributed equally to this research. 
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
W. Buntine et al. (Eds.): SOICT 2024, CCIS 2352, pp. 257–271, 2025. 
https://doi.org/10.1007/978-981-96-4288-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-4288-5_21&domain=pdf
http://orcid.org/0009-0007-7374-6400
http://orcid.org/0009-0009-3491-930X
http://orcid.org/0000-0002-7363-2610
https://doi.org/10.1007/978-981-96-4288-5_21


258 Q.-T. Nguyen et al.

Fig. 1. Setup of the proposed system, which leverages only a standard camera and a 
keyboard image without any markers. 

since they guess keystroke by analyzing finger’s position when typing. The same 
position of finger returns different key in different keyboard layout. Paper interac-
tion system proposed by Adajania et al. [ 1] requires markers printed on keyboard 
images that constrain the accessibility of the system. Meanwhile, projected vir-
tual keyboards often require bulky or expensive equipment such as projectors 
or AR headsets. An AR headset is priced around 400 USD, while a projector 
costs 200 USD, and both are cumbersome to transport and use. Therefore, these 
systems are difficult to deploy for practical use. 

In this paper, we introduce a novel approach for virtual keyboard using only 
a standard camera and a sheet of paper with a printed keyboard layout. In our 
system, a camera required to record the typing user is readily available on any 
laptop or smartphone, therefore it is much cheaper than existing systems relying 
on multiple cameras [ 10] or special camera [ 2, 5, 21]. Our proposed system sup-
ports a variety of keyboard layouts, including QWERTY and AZERTY, as well 
as keyboards from MacOS, like the Magic Keyboard, and those from Windows. 
Specially, unlike the virtual keyboard proposed by Adajania et al. [ 1], we do not 
need to mark anything on the printed image. 

Figure 1(a) shows the setup of our proposed virtual keyboard system. A stan-
dard camera is position in a frontal, slightly angled view, pointing down towards 
the keyboard area. The system can be easily run on a personal computer with 
a webcam. By detecting the keyboard region beforehand, users can type on the 
printed keyboard without any hands in the frame, allowing real-time practical 
deployment. 

The proposed system consists of two main modules: the keyboard process-
ing module identifies the keyboard region and its keys and the touch processing 
module detects whether a touch is made. YOLOv8n-seg and YOLOv8n [ 9] are  
utilized for keyboard and keystroke detection. The printed keyboard is trans-
formed to orthogonal view using homography transformation [ 4] to improve  the  
detection performance. On the other hand, YOLOv8n-seg [ 9] is used to seg-
ment fingernails for color analysis, followed by a color analysis algorithm [ 13] to
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identify whether fingers are pressing. The users have to apply a moderate amount 
of pressure while pressing key to ensure the method works. To expedite the pro-
cess, we analyze fingertip movement using the Google Mediapipe library [ 12] and  
proceed with segmentation only for suspected candidates. 

We conducted extensive experiments and user study to analyzing the pro-
posed system. The experimental results show that we achieved high AP of 92% 
for keyboard detection and 70% for detecting keys on that keyboard. The touch 
detection accuracy is only around 36% due to affects of light intensity in the 
experiments. The results of the user study show that the majority of partici-
pants found our proposed system interesting, as they can input text with just a 
piece of paper and a camera. 

Our contributions are as follows: 

– We present a novel method for constructing a virtual keyboard using a sheet of 
paper that has a printed keyboard layout, all without the need for additional 
markings. 

– We train YOLO models to segment keyboard region and detect keystrokes. 
– We employ the fingertip color analysis to detect touch utilizing only a single 

standard camera. 

2 Related Work 

2.1 Virtual Keyboard 

Adajania et al. [ 1] used a paper sheet with a printed keyboard where the end-
points were highlighted in blue, aiding in their identification during thresholding 
and keyboard recognition. Posner et al. [ 15] developed a virtual floating key-
board for mobile phones, designed to function on any surface by utilizing the 
phone’s single 2D camera to capture and interact with the keyboard. Du et al. [ 5] 
employed a projector to display the virtual keyboard on a surface. Yildiran et al. 
[ 22] employed AR/VR Head-Mounted Displays (HMDs) to render a virtual key-
board and two virtual hands within the display, allowing users to interact with 
the keyboard entirely in a virtual environment. Shatilov et al. [ 17] introduced 
MyoKey, a text entry system for XR headsets that relies on inertial measure-
ment units (IMUs) and myoelectric signals instead of virtual objects, thereby 
reducing the number of gestures needed and improving text input efficiency. 

With the advancement of deep learning, methods that enable typing without 
relying on physical or virtual keyboards began to emerge in the 2020 s. Fu and Xi 
[ 7] introduced a deep-learning approach to infer keystrokes from media channels 
captured by AR headsets. Concurrently, Gu et al. [ 8] developed QwertyRing, a 
text entry technique that utilizes signals from a finger-worn 6-axis IMU along 
with a Bayesian decoder, making it compatible with external displays such as 
AR/VR headsets or smart TVs. Additionally, the Taptype system by Streli et 
al. [ 19] enabled typing using inertial sensors embedded in a wristband, allowing 
users to type without needing to remove their mobile phones from their pockets.
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Different from existing systems, our proposed system employs a printed key-
board layout on a single sheet of paper, which can be in black and white or 
color, without requiring any extra markings. For keystroke inference, a cheap 
camera on any commercial laptop or mobile phone is sufficient to capture both 
the hands typing and the keyboard, resulting in a highly cost-efficient virtual 
keyboard system. 

2.2 Touch Detection 

Touch detection could be achieved based on depth sensors or stereo cameras. 
Yamamoto et al. [ 21] utilized a high-speed vision camera to concentrate on the 
high-frequency component that arose when a fingertip contacted an object. Du 
et al. [ 5] proposed a 3D optical ranging-based virtual keyboard system that 
uses a pattern projector and a 3D range camera. Their system reconstructs 
typing events by analyzing both gray-scale and depth information from the scene, 
specifically examining the depth curve of the finger to detect touch. With an 
overhead camera and a side-mounted camera, Katz et al. [ 10] was also able to 
calculate the three-dimensional coordinates of the fingertips and the surface. 
Agarwal et al. [ 2] introduced a computer vision algorithm that uses an overhead 
stereo camera to detect touch with high precision by aggregating stereo cues from 
several fingertip points. However, these methods necessitate special or multiple 
cameras, leading to higher costs or greater complexity during setup. 

Meanwhile, shadow analysis algorithms were represented. Song et al. [ 18] used  
one camera and one projector overlooking the tabletop. When two fingertips of 
the real finger and its shadow created by the projector merged into one, a touch 
was detected. Posner et al. [ 15] used the similar idea to create their virtual 
keyboard by detecting the fingertip and its shadow’s tip using environment light 
and a standard 2D camera. Also based on shadow analysis, Adajania et al. [ 1] 
proposed the system that detects touch by analyzing the ratio of white pixels, 
which represent areas not covered by shadows, to black pixels, which represent 
shadowed areas. Although these approaches required no additional hardware 
beyond the web camera, their sensitivity to lighting direction can sometimes 
lead to insufficient shadow changes, making touch detection less reliable. 

On the other hand, Marshall et al. [ 13] developed a method to detect finger 
pressure by analyzing color changes in the fingertip, which occurred due to blood 
displacement when pressing against a hard surface. Their approach employed a 
standard camera and computer to visually capture these color variations, allow-
ing for pressure and multi-touch sensing on diverse surfaces without altering 
the physical object. Inspired by the work of Marshall et al. [ 13], we improve 
their algorithm by excluding the normalization step to speed up the nail color 
analysis.
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3 Proposed System 

3.1 Overview 

Our system is represented in Fig. 1(a), where the camera is positioned in front 
and angled upward, so that it clearly captures the keyboard and the hands 
typing on it. The camera angle should not be too vertical, as it will make it 
difficult to observe the nails. At the same time, it should not be too low, as 
this may impair the ability to recognize the keyboard (Sect. 4). It should be 
between 45◦ and 60◦. We use a sheet of paper with a printed keyboard design 
instead of a physical keyboard or a virtual keyboard projected by a projector. 
The image can be printed in color or black and white. The size should be large 
enough to comfortably type by hand (i.e., A4 paper). Only one standard camera 
is needed, and this can be found on any laptop or smartphone. When pressing 
a key, users need to apply sufficient pressure for the color of the fingernail to 
change noticeably, allowing the system to function properly. 

Our system consists of two primary modules: Keyboard processing module 
and Touch processing module, as illustrated in Fig. 2. The keyboard processing 
module identifies the bounding boxes of the keys. Meanwhile, the touch process-
ing module detects the location where the finger touches or releases the key. This 
position is then used to determine which key has been pressed or released. 

3.2 Keyboard Processing Module 

Figure 3 illustrates overview pipeline of keyboard processing module. First, we 
draw a quadrilateral that closely surrounds the edges of the keyboard. Subse-
quently, the keyboard area is transformed to a top-down orthogonal view using 
homography transformation. Finally, the positions of the keys on the keyboard 
are identified utilizing a finely-tuned YOLO model 9. The details of the steps 
are presented as follows. 

Keyboard Region Segmentation. We utilize a semantic segmentation model 
to locate the positions of keyboards within image frames. Prior to processing, 
each image frame is converted to gray-scale, as color can introduce noise, espe-
cially if keyboards are inconsistently colored. The processed frames are then fed 
into the model to segment the keyboards. The results are stored as coordinate 
masks for each keyboard present in the frame. 

Implementation: We employ the YOLOv8s-seg.pt pre-trained model and train 
it for 30 epochs. For fine-tuning, we use one label (keyboard). The learning rate 
is set at 0.01, and the batch size is 16. 

Segmentation Refinement. With a top-down and angled view, the keyboard 
image is not rectangular but trapezoidal. This makes it difficult for the model 
to recognize the keys’ position on the keyboard. Therefore, we use the convex 
hull of these points to create a convex polygon, which maps the image back
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Fig. 2. Flowchart of the proposed keyboardless interaction system. 

to a perpendicular projection angle. Furthermore, we construct a quadrilateral 
encompassing the keyboard area by utilizing the Minimum Area Enclosing Poly-
gon algorithm [ 3]. 

Homography Transformation. Once the four vertices of the keyboard are 
identified, we employ Homography [ 4] to transform the image from an oblique 
perspective into a rectangular keyboard image with a top-down orthogonal view. 
With this perspective, recognizing individual keys on the keyboard becomes
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Fig. 3. Pipeline of keyboard processing module. 

simpler. Particularly, characters on the keys undergo minimal distortion, facili-
tating the key identification process as bounding boxes do not overlap as much 
as in other viewing angles. Additionally, each point pressed by the user’s hand 
corresponds to a unique bounding box. This enables to swiftly determine which 
key is pressed, optimizing pressed key search. 

Keyboard-Key Recognition. We utilize an object detection model to pin-
point the positions of individual keys on the keyboard, resulting in a clearly 
delineated keyboard with each key’s location distinctly marked, avoiding over-
lap (see Fig. 4). 

Implementation: We utilize the pre-trained YOLOv8n.pt model and train it 
for 18 epochs. Our fine-tuning process involves 60 labels, corresponding to the 
60 keys on a standard keyboard. We employ a batch size of 16, with a learning 
rate set at 0.01 to optimize the training process. 

Fig. 4. Keyboard with keys are detected and marked.
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3.3 Touch Processing Module 

Figure 5 illustrates the pipeline for touch detection. First, the video frame is 
passed through the hand landmarks detection model [ 12] to determine the posi-
tion of the fingertips . Then we compare position of the fingertips within a 
sufficiently small neighborhood of current frame and return one of these event: 
press a key or keep holding a key (i.e., touch down), release a key (i.e., touch 
up), and press nothing (i.e., finger is in the air). 

With the touch up event, we set pressing status to False, and jump to the last 
step of this module. With the key down event, we analyze color of the fingertips 
to make sure there is a touch down event with higher confident level. 

To determine whether the finger is pressing a key, we segment the fingernail 
and analyze its color. Particularly, we extract a small image region whose center 
at the position detected by the hand landmarks detection model and has a 
predefined size. This frame is then passed through the segmentation model to 
detect the actual nail area. Similar to the work of Marshall el al. [ 13], we calculate 
Hue values as follows: 

MeanHue  = arctan

([
n∑
1 

cos(Hue)

]
,

[
n∑
1 

sin(Hue)

])
, (1) 

V arHue  = 
1 
n 

n∑
1 

min
(
(Hue − MeanHue)2 , (360 − (Hue − MeanHue))2

)
, 

(2) 

Fig. 5. Pipeline of touch processing module.
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Base on the V arHue  value, we check whether this is indeed a press event 
or not. If there is a Touch down event (i.e., a finger is pressing a key), we set 
pressing status to True and move to last step. 

Finally, the pressing status is check whether changed or not. If it did, the 
user had just pressed or released a key. We combine the coordinate of this event 
with data from keyboard processing module to determine which key is pressed 
or release. 

To avoid excessive segmentation of the fingernail, which is a slow process, 
we do a calculation to find out if there is a touch down or touch up with low 
confident level or not. Let |Δx| and |Δy| represent the changes in the position 
of the fingertip in the horizontal and vertical directions, respectively. We checks 
how the new position differs from the positions of previous frames via four cases: 

– If |Δx| is too big, there might be something wrong in the hand landmarks 
detection model (e.g., the finger is covered by the others). We assumes the 
finger just release the key if it is pressing a key. 

– If Δy > 0 and the finger is not pressing any key, it might be about to press a 
key. We note that and wait for next frame to know the finger keeps moving 
downward or stop when meeting a keyboard surface. 

– If Δy < 0 and the finger is pressing a key, it might be about to release a key. 
– If |Δy| < ε, where  ε is the movement threshold, we assumes that different 

is caused by the unstable when detecting hand landmarks, and the finger is 
considered not moving. We now use the color processing layer to determine 
whether there is a press event or not. 

– In other cases, nothing changes. We go to the next video frame. 

4 Experiment 

4.1 Experimental Settings 

We set up our system in natural light environment for experiments because it 
is difficult to observe the color of the nail polish under artificial light. A back 
camera in iPhone 13 Pro Max was used to record typing videos. 

Before typing, users should leave the keyboard stationary on a flat surface 
for a moment to allow the system to detect the positions of the keys. Next, they 
need to position their fingers in front of the camera without pressing any keys, 
enabling the system to capture the initial color of their fingers. 

For keyboard region detection, we utilized 2,007 images for training and 
388 images for validation. The dataset is aggregated from various sources, such 
as Microsoft COCO [ 11] (1,790 images for training and 388 images for valida-
tion), E-waste [ 20] (130 images for training), and MieKeyboard [ 14] (130 images 
for training). For keyboard-key recognition, we used “Keyboard Key Detection 
Dataset” [ 6] (5,050 images for training, 198 images for validating). For fingernail 
segmentation, we used the dataset from user “Personal Projects” on Roboflow 
[ 16] (4,369 images for training, 16 for validating, 12 for testing).
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4.2 Experimental Results 
Keyboard-Key Detection. We took 12 photos of keyboard 3 with frontal 
view, in three different angles, as illustrated in Fig. 6. Regardless captured images 
were not clear, keyboard region was detected with acceptable AP around 90%, 
as showed in Table 1. Average accuracy of keys on keyboard is about 70%. This 
detection performance is not so high because the dataset contains many keyboard 
layouts (e.g., QWERTY, AZERTY, Windows keyboard layout, Mac keyboard 
layout). 

Fig. 6. Illustration of keyboard layouts from different perspectives. 

Nail Segmentation. We captured two images of typing hands from different 
angles, as shown in Fig. 7. The result is represented in Table 2. The thumbs and 
little fingers often have a lower recognition rate because their angles are usually 
not aligned with the camera angle. 

Touch Detection. We recorded several videos pressing a surface to validate 
the performance of touch detection. Results are showed in Table 3. Two index 
fingers and two middle fingers have high accuracy, meanwhile two ring fingers 
and two little fingers have high wrong probability, since they move a lot and 
they are not observed from a direct view.
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Table 1. Keyboard detection results. 

Type of keyboard View angle AP of “keyboard” class Average accuracy of keys 
Mac QWERTY Frontal 0.95 0.8 
Mac QWERTY 60 0.95 0.67 
Mac QWERTY 45 0.94 0.7 
Mac QWERTY 30 0.96 0.77 
Windows AZERTY Frontal 0.89 0.64 
Windows AZERTY 60 0.89 0.64 
Windows AZERTY 45 0.88 0.57 
Windows AZERTY 30 0.91 0.69 
Windows QWERTY Frontal 0.91 0.81 
Windows QWERTY 60 0.93 0.71 
Windows QWERTY 45 0.92 0.71 
Windows QWERTY 30 x x 

Fig. 7. Hands with fingers segmented. 

Table 2. Nail segmentation result. 

View angle Mean prob. Min. prob. Min. finger Max. prob. 
30 0.82 0.72 Little fingers and thumbs 0.89 
70 0.79 0.70 Little fingers 0.87
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Table 3. Touch detection result. 

Finger No. pressing time True Positive False Negative 
Right thumb 3 3 1 
Right index finger 9 8 1 
Right middle finger 7 5 2 
Right ring finger 6 3 1 
Right little finger 7 3 2 
Left thumb 3 1 0 
Left index finger 8 6 0 
Left middle finger 8 5 1 
Left ring finger 7 4 0 
Left little finger 6 4 3 

Fig. 8. User study result. 

5 User Study 

We invited participants to experience our system and share their feedback. The 
participants include 20 people (70% of whom are male) with age between 10 and 
51 (most of them are from 18 to 30.) 

We asked each participant to complete two tasks. The first task is to type a 
piece of text (using one key at a time). The second task involves formatting the 
text (using a combination of multiple keys such as bold, italic, copy, paste, etc.). 

After that, we surveyed users about several aspects of the system, including 
interest level and satisfaction (i.e., accuracy and smoothness). The scale ranges 
from 1 (very bad) to 5 (very good). The results presented in Fig. 8 shows that 
participants highly evaluated our proposed system in both tasks. 

Additionally, we gather user feedback on the system’s limitations and what 
can be improved. The majority of users request improvements in smoothness 
and accuracy, as they sometimes experience lag in the system.
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6 Conclusion 

In this paper, we introduced a new approach to construct a low-cost virtual key-
board system by combining traditional computer vision algorithms and advance-
ments in deep learning. We fine-tuned YOLOv8 models to detect and segment 
keyboard region and keyboard keys with high confident level, with the accuracy 
of 92% for keyboard region, and 70% for keys. We utilized the traditional algo-
rithms to analyze the color of fingernail for touch detection with the accuracy 
about 36%. This result was not high since there are many factors affect the 
system (i.e. lighting conditions, camera angles, pressing force and fingernail of 
users). We carried out a pilot study to obtain initial qualitative insights into 
the usability of our system. The findings demonstrated the advantages of the 
proposed system, particularly its efficiency in typing without the need for spe-
cialized equipment. Participants also offered useful feedback, pointing out areas 
for enhancement, including the need to improve the system’s smoothness and 
accuracy, as well as the suggestion that the application should have built-in 
guidance rather than relying on manual instructions. 

We have plan to enhance touch detection algorithms to achieve higher per-
formance. We will combine OCR technique to classify keyboard layout better. 
Therefore we can fine-tune models for each keyboard layout. Moreover, we will 
integrate LLM models to auto-correct text while typing. 
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